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An important physiological response to changes in local or systemic oxygenation is the modulation of vascular tone,
which is mediated in part by changes in the activities of the 3 NO synthase (NOS) isoforms. In arterial smooth muscle
cells, acute hypoxia induces increased vascular tone, which is attenuated if hypoxia persists. In this issue of the JCI,
Ward et al. demonstrate that changes in O, concentration have effects on neuronal NOS enzymatic activity and gene

expression that contribute to vascular homeostasis under conditions of acute and chronic hypoxia.
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commentaries

for any of these conditions at any time of
life anywhere in the world. Until this hap-
pens, there will still be patients who present
with recurrent infections who have undiag-
nosed, genetically determined immunode-
ficiency, the basis of which is unidentified.
Failure to make these diagnoses early in life
results in high rates of mortality and mor-
bidity that could be prevented.
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An important physiological response to changes in local or systemic oxy-
genation is the modulation of vascular tone, which is mediated in part by
changes in the activities of the 3 NO synthase (NOS) isoforms. In arterial
smooth muscle cells, acute hypoxia induces increased vascular tone, which
is attenuated if hypoxia persists. In this issue of the JCI, Ward et al. demon-
strate that changes in O, concentration have effects on neuronal NOS enzy-
matic activity and gene expression that contribute to vascular homeostasis
under conditions of acute and chronic hypoxia (see the related article begin-

ning on page 3128).

Every cell in the human body is dependent
upon the delivery of adequate concentra-
tions of O, to maintain normal cellular
functions, which are principally powered
by ATP derived from mitochondrial oxi-
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dative phosphorylation. The anatomical
matching of O, delivery to demand is
determined by the production of secret-
ed factors that stimulate blood vessel
growth, most notably VEGF (1). Every
step of its biogenesis, from transcription
of VEGF gene sequences in the nucleus
and protection of the resulting mRNA
against degradation to the ribosomal
translation and folding of VEGF protein
in the endoplasmic reticulum and trans-
port via the Golgi system to the plasma
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membrane for secretion, is O, regulated,
as is the expression of its cognate receptor
on vascular endothelial cells (1-3).
Anatomical responses to changes in O,
demand occur on a scale of days, whereas
other physiological responses resulting in
alterations in O; delivery occur on a scale
of seconds. Systemic responses are medi-
ated by chemoreceptor cells in the carotid
body that depolarize in response to reduced
arterial O; tension, leading to reflex chang-
es in ventilation, heart rate, and vascular
tone (4). The vasculature within tissues
also responds to acute regional hypoxia by
dilation of arterioles that control the flow
of blood into each capillary bed, as in the
case of increased O, consumption in skel-
etal muscle during exercise (5). In contrast,
when systemic hypoxia occurs as a result of
vascular hypotension (shock), the adrener-
gic nervous system directs redistribution
of blood flow to maintain the perfusion of
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the heart and brain at the expense of other
organs such as the gastrointestinal tract.
However, under conditions of chronic
hypoxia, the contractile response of arter-
ies to hypoxia is blunted in an attempt to
maintain tissue viability.

NO business like flow business

The endothelium plays a critical role in the
production of vasoactive molecules that
regulate blood flow. NO produced in the
endothelium by eNOS (encoded by the
NOS3 gene in humans) has been shown to
play a major role by binding to soluble gua-
nylate cyclase in vascular smooth muscle
cells, resulting in cGMP production and
the activation of signal transduction path-
ways leading to vasodilation (6). Activation
of eNOS is also required for endothelial
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cell responses to angiogenic factors. Under
hypoxic conditions, iNOS mRNA (encoded
by the human NOS2 gene) is also expressed
in endothelial cells, macrophages, and
other cell types (7, 8).

In this issue of the JCI, Ward et al. report
that chronic hypoxia also induces increased
activity of neuronal NO synthase (nNOS;
encoded by the human NOSI gene) in arteri-
al smooth muscle cells (9). Increased nNOS
activity is a consequence of increased nNOS
protein synthesis, which occurs against the
background of a global reduction in protein
synthesis that serves to conserve ATP by
reducing the synthesis of all nonessential
proteins in hypoxic cells. A major mecha-
nism mediating inhibition of protein syn-
thesis is the phosphorylation of eukaryotic
translation initiation factor-2o by pancre-

http://www.jci.org  Volume 115

Number 11

commentaries

Figure 1

Oxygen-dependent regulation of nNOS activ-
ity and vasomotor tone. (A) Hypoxia-induced
transcription of an alternative nNOS mRNA
species. The 2 panels depict nNOS mRNA
transcription under normoxic (upper) and
hypoxic (lower) conditions. In each panel,
the mRNA transcription start site is indicated
by a bent arrow; 5'-untranslated sequences
are indicated by a light blue box; translated
sequences are indicated by a dark blue box;
intervening sequences are indicated by a thick
line; and 5'-flanking sequences are indicated
by a thin line. Top panel: Under normoxic
conditions, transcription is initiated at exon 1
(red box), which consists of 5'-untranslated
sequences. Exon 2 contains additional 5'-
untranslated sequences (light blue box) and
the beginning of the protein coding sequence
(dark blue box). Lower panel: In this issue
of the JCI, Ward et al. (9) demonstrate that
under hypoxic conditions, transcription is initi-
ated downstream of exon 1, resulting in the
synthesis of NNOS mRNA containing an alter-
native 5'-untranslated region (light blue box).
Under hypoxic conditions, the translation of
mRNA containing exon 1 is inhibited, where-
as the alternative mRNA is efficiently trans-
lated into protein. Thus, a qualitative change
in the structure of NNOS mRNA based upon
alternative transcription initiation results in
a quantitative change in the levels of nNOS
protein synthesized under hypoxic conditions.
(B) Time-dependent responses to hypoxia in
vascular smooth muscle cells. (C) Attenuation
of physiological responses with chronic stimu-
lation. A physiological stimulus (e.g., hypoxia)
induces an acute physiological response
(e.g., increased vascular tone). However, if
the stimulus persists, the response is attenu-
ated, resulting in the establishment of a new
(reset) steady state.

atic endoplasmic reticulum kinase (PERK),
which inhibits cap-dependent mRNA trans-
lation (10). The mRNAs encoding VEGF
and several other proteins that are expressed
in response to hypoxia contain an internal
ribosomal entry site, which provides a mech-
anism for bypassing the inhibition of cap-
dependent translation (11).

Table 1
Apparent K, of NOSs for 0,

Gene Protein K (uM)
NOS1 nNOS 350
NOS2 iNOS 130
NOS3 eNO0S 4

Data represented in this table are from
ref. 14.
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Making the best of a bad situation
Ward et al. (9) report that under hypoxic
conditions, an alternative promoter located
in the first intron of the NOSI gene directs
the transcription of mRNA species lacking
5'-untranslated sequences encoded by exon
1, which when present inhibit the transla-
tion of nNOS mRNA into protein, espe-
cially under hypoxic conditions (Figure 1A).
Thus, the synthesis of an mRNA species that
escapes translational repression allows effi-
cient synthesis of nNOS protein in hypoxic
cells. A similar strategy of alternative pro-
moter utilization has been reported for
the VEGF gene (12). Ward et al. also gener-
ated transgenic mice in which lacZ coding
sequences were under the control of a 2.5-kb
Nos1 genomic region upstream of the trans-
lation initiation site. When these mice were
exposed to chronic ambient hypoxia (8% O,
for 48 hours), arterial expression of -galac-
tosidase was induced (9).

With the delineation of the cis-acting
sequences controlling hypoxia-induced
expression of nNOS, attention will turn
to the identification of trans-acting fac-
tors. Hypoxia-inducible factor-1 (HIF-1)
regulates the expression of VEGF as well
as hundreds of other genes in response to
hypoxia (13), including NOS2 (7, 8). Ward
et al. (9) report the presence of poten-
tial HIF-1 binding sites within the NOSI
genomic sequences that were sufficient for
hypoxia-inducible lacZ expression. Chro-
matin immunoprecipitation assays can be
performed to investigate whether HIF-1
binds to specific sites in the NOSI gene in
response to hypoxia.

NO synthase performance:

O, does matter

Even more intriguing is the significance of
nNOS protein synthesis under hypoxic con-
ditions. NO synthase (NOS) catalyzes the
reaction of arginine plus O, to yield citrul-
line plus NO. The apparent K,,s of eNOS,
iNOS, and nNOS allow for NO produc-
tion over a 2-log range of O, concentrations
(ref. 14; Table 1), which provides important
insight into the physiological functions of
the NOS isoforms. The eNOS isoform has a
low K, for O,, which insures that the enzyme
will remain active in endothelial cells that
are invading hypoxic tissue during angio-
genesis. In contrast, the high K,, of nNOS
suggests that even modest reductions in
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O, concentration will result in a significant
loss of enzyme activity and there is a linear
relationship between O, concentration and
nNOS activity over the entire physiological
range (15). These results suggest that the
generation of NO by nNOS may represent
a signal transduction mechanism in which
signal intensity is directly related to O, con-
centration. For example, O,-dependent NO
production inhibits sensory discharge from
the carotid body under normoxic conditions
(16). The fruit fly Drosophila melanogaster also
utilizes NO signaling for a variety of adaptive
responses to hypoxia (17).

Homeostasis: respond and reset
These properties of nNOS enzyme activ-
ity and gene regulation lead to a paradoxi-
cal situation in which hypoxia induces
increased synthesis of nNOS protein, which
has reduced activity due to substrate depri-
vation. Indeed, Ward et al. show that nNOS
protein levels increased approximately 10-
fold (see Figure 4 in ref. 9), whereas NOS
activity increased less than 1.5-fold (see Fig-
ure 3 in ref. 9) in the aortae of rats subjected
to hypoxia. The data suggest a homeostatic
mechanism (Figure 1B) by which acute
hypoxia induces vasoconstriction, which
is attenuated under conditions of chronic
exposure to hypoxia (9, 18). During acute
hypoxia, vascular nNOS activity and NO
levels decline due to the combined effect of
decreased translation of exon 1-initiated
nNOS mRNA into protein and decreased
enzyme activity due to substrate (O,) depri-
vation, leading to an acute increase in vaso-
motor tone. This acute response is followed
by the induction of an alternative nNOS
mRNA isoform that is not subject to hypox-
ia-induced translational inhibition, leading
to increased nNOS protein levels, increased
nNOS activity, and attenuated vasoconstric-
tion. Attenuation of the response under con-
ditions of chronic stimulation is an impor-
tant characteristic of many homeostatic
systems (Figure 1C). The delineation of this
feedback circuit provides both an elegant
illustration of the complex mechanisms that
mediate adaptive responses to hypoxia and a
foundation for further analysis of how these
responses are dysregulated in the setting of
cardiovascular disease.
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