Review

Abstract

Alveolar macrophages (AMs) are the sentinel cells of the alveolar space, maintaining homeostasis, fending off pathogens, and controlling lung inflammation. During acute lung injury, AMs orchestrate the initiation and resolution of inflammation in order to ultimately restore homeostasis. This central role in acute lung inflammation makes AMs attractive targets for therapeutic interventions. Single-cell RNA-Seq and spatial omics approaches, together with methodological advances such as the generation of human macrophages from pluripotent stem cells, have increased understanding of the ontogeny, function, and plasticity of AMs during infectious and sterile lung inflammation, which could move the field closer to clinical application. However, proresolution phenotypes might conflict with proinflammatory and antibacterial responses. Therefore, therapeutic targeting of AMs at vulnerable time points over the course of infectious lung injury might harbor the risk of serious side effects, such as loss of antibacterial host defense capacity. Thus, the identification of key signaling hubs that determine functional fate decisions in AMs is of the utmost importance to harness their therapeutic potential.

Authors

Christina Malainou, Shifaa M. Abdin, Nico Lachmann, Ulrich Matt, Susanne Herold

×

Abstract

Interest in cardioimmunology has reached new heights as the experimental cardiology field works to tap the unrealized potential of immunotherapy for clinical care. Within this space is the cardiac macrophage, a key modulator of cardiac function in health and disease. After a myocardial infarction, myeloid macrophages both protect and harm the heart. To varying degrees, such outcomes are a function of myeloid ontogeny and heterogeneity, as well as functional cellular plasticity. Diversity is further shaped by the extracellular milieu, which fluctuates considerably after coronary occlusion. Ischemic limitation of nutrients constrains the metabolic potential of immune cells, and accumulating evidence supports a paradigm whereby macrophage metabolism is coupled to divergent inflammatory consequences, although experimental evidence for this in the heart is just emerging. Herein we examine the heterogeneous cardiac macrophage response following ischemic injury, with a focus on integrating putative contributions of immunometabolism and implications for therapeutically relevant cardiac injury versus cardiac repair.

Authors

Edward B. Thorp

×

Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung with poor survival. The incidence and mortality of IPF are rising, but treatment remains limited. Currently, two drugs can slow the scarring process but often at the expense of intolerable side effects, and without substantially changing overall survival. A better understanding of mechanisms underlying IPF is likely to lead to improved therapies. The current paradigm proposes that repetitive alveolar epithelial injury from noxious stimuli in a genetically primed individual is followed by abnormal wound healing, including aberrant activity of extracellular matrix–secreting cells, with resultant tissue fibrosis and parenchymal damage. However, this may underplay the importance of the vascular contribution to fibrogenesis. The lungs receive 100% of the cardiac output, and vascular abnormalities in IPF include (a) heterogeneous vessel formation throughout fibrotic lung, including the development of abnormal dilated vessels and anastomoses; (b) abnormal spatially distributed populations of endothelial cells (ECs); (c) dysregulation of endothelial protective pathways such as prostacyclin signaling; and (d) an increased frequency of common vascular and metabolic comorbidities. Here, we propose that vascular and EC abnormalities are both causal and consequential in the pathobiology of IPF and that fuller evaluation of dysregulated pathways may lead to effective therapies and a cure for this devastating disease.

Authors

James May, Jane A. Mitchell, R. Gisli Jenkins

×

Abstract

Antibody-drug conjugates (ADCs) have emerged as a revolutionary therapeutic class, combining the precise targeting ability of monoclonal antibodies with the potent cytotoxic effects of chemotherapeutics. Notably, ADCs have rapidly advanced in the field of breast cancer treatment. This innovative approach holds promise for strengthening the immune system through antibody-mediated cellular toxicity, tumor-specific immunity, and adaptive immune responses. However, the development of upfront and acquired resistance poses substantial challenges in maximizing the effectiveness of these therapeutics, necessitating a deeper understanding of the underlying mechanisms. These mechanisms of resistance include antigen loss, derangements in ADC internalization and recycling, drug clearance, and alterations in signaling pathways and the payload target. To overcome resistance, ongoing research and development efforts are focused on urgently identifying biomarkers, integrating immune therapy approaches, and designing novel cytotoxic payloads. This Review provides an overview of the mechanisms and clinical effectiveness of ADCs, and explores their unique immune-boosting function, while also highlighting the complex resistance mechanisms and safety challenges that must be addressed. A continued focus on how ADCs impact the tumor microenvironment will help to identify new payloads that can improve patient outcomes.

Authors

Hannah L. Chang, Blake Schwettmann, Heather L. McArthur, Isaac S. Chan

×

Abstract

The lymphatic system (LS) is composed of lymphoid organs and a network of vessels that transport interstitial fluid, antigens, lipids, cholesterol, immune cells, and other materials in the body. Abnormal development or malfunction of the LS has been shown to play a key role in the pathophysiology of many disease states. Thus, improved understanding of the anatomical and molecular characteristics of the LS may provide approaches for disease prevention or treatment. Recent advances harnessing single-cell technologies, clinical imaging, discovery of biomarkers, and computational tools have led to the development of strategies to study the LS. This Review summarizes the outcomes of the NIH workshop entitled “Yet to be Charted: Lymphatic System in Health and Disease,” held in September 2022, with emphasis on major areas for advancement. International experts showcased the current state of knowledge regarding the LS and highlighted remaining challenges and opportunities to advance the field.

Authors

Babak J. Mehrara, Andrea J. Radtke, Gwendalyn J. Randolph, Brianna T. Wachter, Patricia Greenwel, Ilsa I. Rovira, Zorina S. Galis, Selen C. Muratoglu

×

Abstract

In recent years, there has been an explosion of interest in how fibroblasts initiate, sustain, and resolve inflammation across disease states. Fibroblasts contain heterogeneous subsets with diverse functionality. The phenotypes of these populations vary depending on their spatial distribution within the tissue and the immunopathologic cues contributing to disease progression. In addition to their roles in structurally supporting organs and remodeling tissue, fibroblasts mediate critical interactions with diverse immune cells. These interactions have important implications for defining mechanisms of disease and identifying potential therapeutic targets. Fibroblasts in the respiratory tract, in particular, determine the severity and outcome of numerous acute and chronic lung diseases, including asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome, and idiopathic pulmonary fibrosis. Here, we review recent studies defining the spatiotemporal identity of the lung-derived fibroblasts and the mechanisms by which these subsets regulate immune responses to insult exposures and highlight past, current, and future therapeutic targets with relevance to fibroblast biology in the context of acute and chronic human respiratory diseases. This perspective highlights the importance of tissue context in defining fibroblast-immune crosstalk and paves the way for identifying therapeutic approaches to benefit patients with acute and chronic pulmonary disorders.

Authors

Mohamed A. Ghonim, David F. Boyd, Tim Flerlage, Paul G. Thomas

×

Abstract

The pulmonary vasculature has been frequently overlooked in acute and chronic lung diseases, such as acute respiratory distress syndrome (ARDS), pulmonary fibrosis (PF), and chronic obstructive pulmonary disease (COPD). The primary emphasis in the management of these parenchymal disorders has largely revolved around the injury and aberrant repair of epithelial cells. However, there is increasing evidence that the vascular endothelium plays an active role in the development of acute and chronic lung diseases. The endothelial cell network in the capillary bed and the arterial and venous vessels provides a metabolically highly active barrier that controls the migration of immune cells, regulates vascular tone and permeability, and participates in the remodeling processes. Phenotypically and functionally altered endothelial cells, and remodeled vessels, can be found in acute and chronic lung diseases, although to different degrees, likely because of disease-specific mechanisms. Since vascular remodeling is associated with pulmonary hypertension, which worsens patient outcomes and survival, it is crucial to understand the underlying vascular alterations. In this Review, we describe the current knowledge regarding the role of the pulmonary vasculature in the development and progression of ARDS, PF, and COPD; we also outline future research directions with the hope of facilitating the development of mechanism-based therapies.

Authors

Izabela Borek, Anna Birnhuber, Norbert F. Voelkel, Leigh M. Marsh, Grazyna Kwapiszewska

×

Abstract

Mesenchymal cells are uniquely located at the interface between the epithelial lining and the stroma, allowing them to act as a signaling hub among diverse cellular compartments of the lung. During embryonic and postnatal lung development, mesenchyme-derived signals instruct epithelial budding, branching morphogenesis, and subsequent structural and functional maturation. Later during adult life, the mesenchyme plays divergent roles wherein its balanced activation promotes epithelial repair after injury while its aberrant activation can lead to pathological remodeling and fibrosis that are associated with multiple chronic pulmonary diseases, including bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this Review, we discuss the involvement of the lung mesenchyme in various morphogenic, neomorphogenic, and dysmorphogenic aspects of lung biology and health, with special emphasis on lung fibroblast subsets and smooth muscle cells, intercellular communication, and intrinsic mesenchymal mechanisms that drive such physiological and pathophysiological events throughout development, homeostasis, injury repair, regeneration, and aging.

Authors

Elie El Agha, Victor J. Thannickal

×

Abstract

Acute respiratory infections trigger an inflammatory immune response with the goal of pathogen clearance; however, overexuberant inflammation causes tissue damage and impairs pulmonary function. CD4+FOXP3+ regulatory T cells (Tregs) interact with cells of both the innate and the adaptive immune system to limit acute pulmonary inflammation and promote its resolution. Tregs also provide tissue protection and coordinate lung tissue repair, facilitating a return to homeostatic pulmonary function. Here, we review Treg-mediated modulation of the host response to respiratory pathogens, focusing on mechanisms underlying how Tregs promote resolution of inflammation and repair of acute lung injury. We also discuss potential strategies to harness and optimize Tregs as a cellular therapy for patients with severe acute respiratory infection and discuss open questions in the field.

Authors

Milica Jovisic, Nurbek Mambetsariev, Benjamin D. Singer, Luisa Morales-Nebreda

×

Abstract

Despite the remarkable success of immune checkpoint inhibitors (ICIs) in melanoma treatment, resistance to them remains a substantial clinical challenge. Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of myeloid cells that can suppress antitumor immune responses mediated by T and natural killer cells and promote tumor growth. They are major contributors to ICI resistance and play a crucial role in creating an immunosuppressive tumor microenvironment. Therefore, targeting MDSCs is considered a promising strategy to improve the therapeutic efficacy of ICIs. This Review describes the mechanism of MDSC-mediated immune suppression, preclinical and clinical studies on MDSC targeting, and potential strategies for inhibiting MDSC functions to improve melanoma immunotherapy.

Authors

Feyza Gul Ozbay Kurt, Samantha Lasser, Ihor Arkhypov, Jochen Utikal, Viktor Umansky

×

No posts were found with this tag.